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Local Compositions and the Square-Well Fluid'

K.-H. Lee,” S. L. Sandler,” and P. A. Monson®

Many applied thermodynamic models are based on the local composition con-
cept, that is, that the composition of neighboring molecules around a central
molecule is different from the bulk fluid composition. In this paper we consider
the rigorous calculation of local compositions for a model mixture of square-
well molecules via statistical mechanics using Monte Carlo simulations and
integral equation theory. The results show that the currently available models
do not correctly describe the density and composition dependence of the local
structure.
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1. INTRODUCTION

The concept of local composition has been the subject of considerable
interest in the analysis and development of applied thermodynamic models
[1-3] such as equation-of-state mixing rules. In order to understand fully
the molecular basis of these models it is useful to apply them to model
systems for which the local intermolecular structure can be obtained in a
rigorous and unambiguous fashion via the methods of statistical mechanics.

One system which is especially useful for this purpose is a fluid
mixture in which the molecules interact with square-well potentials. In this
paper we present a study of the local compositions in square-well fluid
mixtures using two statistical mechanical techniques. First, we have perfor-
med Monte Carlo simulations of square-well mixtures in which the radial
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distribution functions in the fluid can be calculated in an essentially exact
manner. However, since these simulations are expensive and time-con-
suming, it is worthwhile investigating the possibility of finding a more
economical method for calculating the distribution functions. Such a
method should, of course, have a rigorous foundation in statistical
mechanics. To this end we have carried out calculations of the structure
and thermodynamic properties of square-well mixtures using the mean
spherical approximation (MSA) integral equation [4]. This theory has
been shown to give reliable results for pure fluids [5]. The present work
demonstrates that this is also true for mixtures.

The remainder of the paper is organized as follows. In the next section
we briefly outline the concept of local compositions and review the basis of
some of the widely used models. In Section III we describe our simulation
and integral equation calculations. Finally, in Section IV we describe our
results and make comparisons with the predictions of commonly used local
composition models. In particular, we focus on the accuracy of the models
in predicting the density dependence of the local compositions and,
additionally, the composition dependence of the total coordination number
at constant density or pressure.

2. LOCAL COMPOSITION MODELS FOR MIXTURES

In our previous work on the genecralized van der Waals partition
function [1,27, we have shown that the quantity of fundamental
interest is the configurational contribution to the internal energy
ECONY(N,, N,,..., V, T) given by

ECONE(N |, Ny, V, T) = ZZECONF N, Ny, V, 1) (1)

where
N2

EGONF(N |, Ny, V, T) = =

xix_jj “1_‘/(”) g(/(Nx s Ny Vi Tir)dr (2)

In this equation E;°N" is the configuration energy for i molecules around a
central j molecule, u,(r) and g,{(r) are the interaction energy and pair
correlation functions for the i—j interaction, x; and N, are the mole fraction
and mole number of species i, V is the volume, T is the temperature, and r
is the radial separation distance. From the configurational energy and the
use of either the Gibbs—Helmholtz relation or the generalized van der
Waals partition function, the Helmholtz free energy and the fundamental
equation of state of the mixture can be obtained.
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Rather than the configurational energy, many recent studies have con-
centrated on the local compositions or local mole fractions. However, it is
only for the square-well fluid

0 r<oy
uii(r): _81_'/ UU<r<Rij
0 Ro,<r
for which
—N? Ra, — Nx;,
BGON =iy | gy de =0, 3)

that (i) the local composition is unambiguously defined since there is no
uncertainty about the nearest-neighbor cutoff distance and that (ii) the
number of / molecules around a j molecule

N Rajj
Ny=gxi| ) di )

contains the same information as E{°F. In this communication, we con-
centrate, for the square-well fluid, on the species—species coordination num-
bers N, and the local mole fractions

N,

i ]<] (5)
2k kj
as these are what have been considered recently [6-87.

There are two general classes of local composition models. The first
involves a model for each of the N,;. The second class is based on models
for the ratio N;/N; (or equivalently, x,/x;) and requires another, and quite
separate, assumption for the temperature, density, and composition depen-
dence of the total coordination number

X

N,=Y N, (6)
k

In recent studies [1, 3] we have presented an analysis of local com-
position models in terms of the generalized van der Waals partition
function. With this analysis it is possible to identify assumptions about the
density and composition dependence of the local compositions and the
total coordination number implicit in these models. The forms of the local
compositions for various models are briefly summarized in Table L
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Table 1. Local Composition Models and the Equation-of-State
Mixing Rule to Which They Lead

Local composition and Equation-of-state
coordination number model mixing rule
N; . .
@ Ny=5C  hj=L2 vdW 1-fluid
N; . .
b) Ny=7Cp  Lj=12 vdW 1-fluid
N .
(c) Nij='I7Cij€” s i,j=1,2 vdW 1-fluid
N, .
(d) NU=CU—I7exp(a£ij-/kT), Lj=12 Huetal [15]
0.1865
a=0.60-0.58{ p ¥ x;0,°
N, N;v; a;
(e) _j=‘1§,‘_j az(zxivi>zz¢i¢j"—;j—5
i iV i
N
ch=NU'+NjJ=I_/C/‘ where (l)i:xivl-/ijvj
() Ny_ Nivi elei— VKT As above
Ny Ny,
(Wilson model)

N
Noy=Ny+Ny==C;

©) % - % % e Whiting and Prausnitz [ 14]
i J~i
N
N.==~¢C
=y

Having identified these assumptions we can test them by making
accurate calculations of the local structure in the fluid mixture using
rigorous statistical mechanics. In the next section we describe these
calculations.

3. STATISTICAL MECHANICAL TOOLS

3.1. Computer Simulations

We have performed a number of computer simulations using the
Monte Carlo method, for a range of binary square-well mixtures with
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various diameter and well-depth ratios. The details of the simulations are
described in detail elsewhere [2]. The quantities calculated in these
simulations were the radial distribution functions and the species coor-
dination numbers. Table IT shows the interaction parameters and state
points used.

3.2. Mean Spherical Approximation

The mean spherical approximation (MSA) was suggested as a closure
to the Ornstein-Zernike [9] equation by Lebowitz and Percus [4]. For a
mixture the Ornstein-Zernike equation may be written

h,-k(r)=c,-k(r)+Zthg,(ir“r’I)C,-k(lr’l)dr' (7)

where /,(r)=g;(r)—1 is the total correlation function, and c,(r) is the
direct correlation function. The subscripts denote the different types of
correlations between the species in the mixture. In the MSA Eq. (6) is sup-
plemented with the conditions

hr)= —1, r<oy (8)
_ —uylr)
C,-]-(r)—k—T, r>0'i/» (9)

Equation (8) is an exact result which follows from the inpenetrability of the
hard-sphere cores, while Eq. (9) is an approximation. Equations (7)-(9)

Table II. Mixture Square-Well Parameters and State Points Used in the
Monte Carlo Simulations and MSA Integral Equation Calculations

Square-well parameters

Set 1 e /kT =04, exn/kT=0.8
011 =02, Ry =Ry;=15

Set 2 e/kT=¢e,/kT=04
op=150, Ry=Ryu=15

State points

MSA ¥ = 0.125 to 0.875 in increments of 0.125
pc®=0.1t0 0.7 in increments of 0.1

MC x;=0.25t0 0.75 in increments of 0.25

p; =0.1 to 0.7 in increments of 0.2

. R 5
6P =x,0( +X:0
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may be solved simultaneously to obtain the total and direct correlation
functions at a given temperature and density. To do this we have used the
efficient and stable method developed by Gillan [10] and extended to
mixtures by Abernethy and Gillan [11]. In these numerical solutions we
have used a grid size of 0.05¢,, and a maximum value of r of 6.45,.
Once the distribution functions have been obtained, the coordination
numbers may be calculated, as well as other thermodynamic properties.
Due to the approximate nature of the MSA, the values of thermodynamic
properties obtained via different routes are not consistent with each other.
For pure square-well fluids, Smith et al. have found that the energy
equation route is the most satisfactory and gives excellent agreement with
computer simulation results except at low densities. Additionally, of course,
this is the route which is thermodynamically consistent with the
calculations of coordination numbers from the distribution functions. Hoye
and Stell [12] have shown that all the energy equation thermodynamic

N
t

—
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Fig. 1. The radial distribution function for a square-well mixture in which ¢, =1.5, ¢, = 1.0,

&1 =£5, =04, pe®=0.3, and x, =0.5. The lines are the result of MSA and the points O, A,
and OJ are the Monte Carlo results for g,;, g,,, and g,,, respectively.
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properties in the MSA may be obtained directly from the distribution
functions without recourse to numerical thermodynamic integration or dif-
ferentiations. Therefore, thermodynamic properties from the MSA used in
this paper were obtained using the energy equation.

4. RESULTS

As mentioned above, there are two aspects to the present paper. First,
we wish to demonstrate the efficiency of using the MSA as an economical
and accurate probe of the local structure in these mixtures, which can then
be used in more extensive investigations. Second, we wish to use results
from both the simulations and the MSA to investigate the accuracy of key
assumptions inherent in the local composition models used currently.

Figures 1 and 2 show the representative comparisons of the dis-
tribution functions in square-well mixtures calculated from the MSA with
those from the Monte Carlo simulations. The agreement is excellent,

N

—
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¢] 1 2 3
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Fig. 2. The radial distribution function for the same square-well mixture with p53=0.7.
Legend as for Fig. 1.
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especially at a high density, which is impressive since the MSA calculations
are very quick and inexpensive. Having thus established the accuracy of the
MSA, many of the comparisons which follow will be with the MSA results.
It should be noted, however, that the MSA is not correct in the limit of
zero density and, therefore, contains some error at low densities as well.
From the radial distribution functions the spcial-species coordination
numbers, N;, can be calculated from Eq. (4), and the total coordination
number from Eq.(6). Figure 3 is a plot of the ratios as a function of

reduced density ps> and composition. Shown are the results of Monte
Carlo simulation, MSA theory, and the various local composition models
in Table I. From Fig. 3 we see the general agreement between the Monte
Carlo and the MSA results for this very sensitive ratio and the lack of
agreement of all the local composition models with the data derived from
statistical mechanics. We believe that the small systematic discrepancy
between the Monte Carlo and the MSA results is related to the incorrect
low-density behavior of the MSA.
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Fig. 3. The local composition ratios Ny N; 6, /N1 i N,0> (top) and Ny, N,0,, /Ny Nya)
(bottom) as a function of density for (a) 6,; =0, =1, g;,/kT =04, and ¢,,/kT=0.8 and (b)
611=1, 6,=1.5, and &,,/kT = £5,/kT=0.4. These ratios would be unity in a completely ran-
dom mixture. The points M and (], A and A, and @ and O results from Monte Carlo
simulation at x; =0.25, 0.5, and 0.75, respectively. The lines —-—, — —, and ---- are from
MSA at the same compositions. The remaining lines, -, ----, and result from the models
of Wilson [13], Whiting and Prausnitz [14], and Hu et al. [15] in (a).
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Fig. 4. The total coordination numbers N, and N, as a function of composition at a con-
stant reduced density. The points [, A, O, and < and the lines —— results form the MSA
and Monte Carlo simulation for the reduced densities pa? of 0.1, 0.3, 0.5, and 0.7 for N,
while the points M, A, ®, and & and the lines ---- are for N,. (a) For mixture

011=05=10, &,/kT=04, and &,/kT=08; (b) for o,,=10, 6,,=15, and ¢, /kT=
en/kT=04.
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Fig. 5. The total coordination numbers N, and N, as a function of composition at constant
number density. Legend as for Fig. 4 except for densities p of 0.1, 0.3, 0.5, and 0.7.
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The second assumption imbedded in some local composition models
(models ¢, f, and g in Table I) is that the total coordination number is con-
stant as a function of the mole fraction. This assumption is tested in Figs.
4-7, where we examine the composition dependence of the total coor-
dination numbers as a function of the mole fraction at constant density,
constant reduced density pa®, and constant pressure. In Fig. 4 we see that,
at a constant reduced density, the total coordination number is
approximately constant with composition for equal-size molecules but
increases for both the large and the smaill molecules with the mole fraction
of the small molecule in the equal-well-depth, unequal-size mixture.

c,i
10]

0 1

Fig. 6. The total coordination number for each species in a
mixture of equal-size square-well molecules versus composition
at constant pressure. The interaction parameters are ¢;,/kT =
0.4 and &,,/kT=0.8. The solid line gives the results for com-
ponent 2, and the dashed line that for component 1. Results
for three pressures are shown, and the curves are marked with
the value of P/kT.
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Figure 5 shows that as the mole fraction of the small molecule increases,
the total coordination number for both the large and the small molecules
decreases at a constant reduced density. (Note that for the equal-size
mixture constant density and constant number density are identical.)
Finally, in Figs. 6 and 7 we see that for compositional changes at constant
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Fig. 7. The total coordination number for each species in a
mixture of different-size square-well molecules versus com-
position at constant pressure. The interaction parameter are
g, =10, 6,5= 1.5, and ¢,,/kT = e4,/kT = 4. The solid line gives
the results for component 2, and the dashed line that for com-
ponent 1. The letters marking each curve denote the value of
P/kT: (A) 1.0; (B) 0.5; (C) 0.25.
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pressure in the unequal-size mixture, the total coordination numbers of
both the large and the small molecules decrease with increasing mole frac-
tion of the smaller species at low pressure, are approxmately constant at
moderate pressures, and increase at high pressures.

5. CONCLUSIONS

In this communication we have shown, by comparison with the results
of Monte Carlo simulation, that at moderate and high densities (pa” > 0.3)
the mean spherical approximation is a computationally efficient method of
obtaining accurate structural and local composition information about
mixtures of square-well molecules. Presumably, other integral equation
methods would also be useful for this kind of study with more general
potential models.

Next, we have shown in Fig. 3 that local compositions different from
the bulk compositions do exist, but none of the local composition models
for the ratios N,/N; currently used are in agreement with statistical
mechanical calculations. Since such local composition models are the basis
for equation-of-state mixing rules and activity coefficient equations, further
study of local compositions (or more correctly, the configurational energies
EGONF) is clearly justified.

Also imbedded into some local composition models, such as that of
Wilson [13] and of Whiting and Prausnitz [14], is the lattice model
assumption ,that the total coordination number around a molecule is
independent of the mole fraction. We have shown here that except for the
case of equal-size molecules, this assumption is incorrect. In particular, for
the unequal-size molecular mixture studied here, with increasing mole frac-
tion of the smaller molecule, the total coordination numbers of both
species increase at constant density, decrease at constant reduced density,
and, depending on the system pressure, either increase or decrease at con-
stant pressure.
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