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Local Compositions and the Square-Well Fluid 1 

K.-H. Lee,  2 S. I. Sandier,  2 and P. A. M o n s o n  3 

Many applied thermodynamic models are based on the local composition con- 
cept, that is, that the composition of neighboring molecules around a central 
molecule is different from the bulk fluid composition. In this paper we consider 
the rigorous calculation of local compositions for a model mixture of square- 
well molecules via statistical mechanics using Monte Carlo simulations and 
integral equation theory. The results show that the currently available models 
do not correctly describe the density and composition dependence of the local 
structure. 

KEY WORDS: density; local composition; Monte Carlo method; square-well 
fluid; statistical mechanics. 

1. I N T R O D U C T I O N  

The concept  of local  compos i t i on  has been the subject  of cons iderab le  
interest  in the analysis  and  deve lopmen t  of appl ied  t h e r m o d y n a m i c  models  
[-1-3] such as equa t ion-of -s ta te  mixing rules. In  o rder  to unde r s t and  fully 
the molecu la r  basis of these models  it is useful to app ly  them to mode l  
systems for which the local  in te rmolecula r  s t ructure  can be ob ta ined  in a 
r igorous  and  unambiguous  fashion via the me thods  of s tat is t ical  mechanics.  

One  system which is especial ly useful for this pu rpose  is a fluid 
mixture  in which the molecules  in teract  with square-wel l  potent ials .  In this 
paper  we present  a s tudy of the local  compos i t ions  in square-well  fluid 
mixtures  using two stat is t ical  mechanica l  techniques.  Firs t ,  we have perfor-  
med M o n t e  Car lo  s imula t ions  of square-wel l  mixtures  in which the radia l  
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distribution functions in the fluid can be calculated in an essentially exact 
manner. However, since these simulations are expensive and time-con- 
suming, it is worthwhile investigating the possibility of finding a more 
economical method for calculating the distribution functions. Such a 
method should, of course, have a rigorous foundation in statistical 
mechanics. To this end we have carried out calculations of the structure 
and thermodynamic properties of square-well mixtures using the mean 
spherical approximation (MSA) integral equation [4].  This theory has 
been shown to give reliable results for pure fluids [-5]. The present work 
demonstrates that this is also true for mixtures. 

The remainder of the paper is organized as follows. In the next section 
we briefly outline the concept of local compositions and review the basis of 
some of the widely used models. In Section III we describe our simulation 
and integral equation calculations. Finally, in Section IV we describe our 
results and make comparisons with the predictions of commonly used local 
composition models. In particular, we focus on the accuracy of the models 
in predicting the density dependence of the local compositions and, 
additionally, the composition dependence of the total coordination number 
at constant density or pressure. 

2. LOCAL COMPOSITION MODELS FOR MIXTURES 

In our previous work on the generalized van der Waals partition 
function [1 ,2 ] ,  we have shown that the quantity of fundamental 
interest is the configurational contribution to the internal energy 
EC~ N2,..., V, T) given by 

EC~ N 2 ..... V, T) = ~ ~ FCONV~ ar N2 ..... V, T) (1) , ~ j  t "  ' 1 ,  

i / 

where 
N 2 

EiC~ N2 ..... V, T ) = ~ x , x j f  u~/(r) g~/(N~, N2 ..... V, T; r)dr (2) 

In this equation E c~ is the configuration energy for i molecules around a 
central j molecule, uo.(r) and gii(r) are the interaction energy and pair 
correlation functions for the i-j interaction, xi and Ni are the mole fraction 
and mole number of species i, V is the volume, T is the temperature, and r 
is the radial separation distance. From the configurational energy and the 
use of either the Gibbs-Helmholtz relation or the generalized van der 
Waals partition function, the Helmholtz free energy and the fundamental 
equation of state of the mixture can be obtained. 
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Rather than the configurational energy, many recent studies have con- 
centrated on the local compositions or local mole fractions. However, it is 
only for the square-well fluid 

for which 

oo 

u~i(r) = --aO 

0 

r < a i j  

a o < r < Rag/ 

R a o . <  r 

N 2 [ R~,~ - Nx  / 
ECONF 2V xixjeuJ~ go(r) dr-- 2 e~ (3) 

that (i) the local composition is unambiguously defined since there is no 
uncertainty about the nearest-neighbor cutoff distance and that (ii) the 
number of i molecules around a j molecule 

U 
NO=-~x  i go(r) dr (4) 

CONY In this communication, we con- contains the same information as Eij . 
centrate, for the square-well fluid, on the species species coordination num- 
bers N~ and the local mole fractions 

N,j (5) 
xu - Z~ Nkj 

as these are what have been considered recently [-6-8]. 
There are two general classes of local composition models. The first 

involves a model for each of the N~j. The second class is based on models 
for the ratio No/Njj (or equivalently, x J x  9 and requires another, and quite 
separate, assumption for the temperature, density, and composition depen- 
dence of the total coordination number 

N,j = ~ Nkj (6) 
k 

In recent studies El, 3] we have presented an analysis of local com- 
position models in terms of the generalized van der Waals partition 
function. With this analysis it is possible to identify assumptions about the 
density and composition dependence of the local compositions and the 
total coordination number implicit in these models. The forms of the local 
compositions for various models are briefly summarized in Table I. 
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Table I. Local Composition Models and the Equation-of-State 
Mixing Rule to Which They Lead 

Local composition and Equation-of-state 
coordination number model mixing rule 

N~: = ~ C, i, j = l, 2 vdW 1 ~uid  

N - Ni u - --~ CU, i, j = 1, 2 vdW 1-fluid 

N - Ni ij - T Cije~~ i, j = 1, 2 vdW 1-fluid 

Ni NU= Cu-~exp(c~eo/kT ), i, j =  1, 2 Hu et al. [15] 

~=0.60--0.58(p~xiaii3) ~ 

Nij=N-'!~V~Njj Njvj a = ( ~  x~vs) }[ ~ O~$j~, 
/ 

N 
C where ~i  : Xi•i/Z Xj~)j Nc:=N~+N::=--p j 

Nu= iV,. v_j, e~0_ ~)/~r As above 
Ujj Uj~: 
(Wilson model) 

N 
Ncj= Nij-}- Njj=-~ Cj 

NU = Ni CiJ e(.o ~j:)N~/kr Whiting and Prausnitz [ 14 ] 
Njj NjCj: 

N Nc=-~C 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Hav ing  identif ied these assumpt ions  we can test them by mak ing  
accurate  calcula t ions  of the local s t ructure  in the fluid mixture  using 
r igorous  stat is t ical  mechanics.  In  the next sect ion we descr ibe these 
calculat ions.  

3. S T A T I S T I C A L  M E C H A N I C A L  T O O L S  

3.1. Computer Simulations 

We have per formed a number  of compu te r  s imula t ions  using the 
Mon te  Car lo  method ,  for a range of b ina ry  square-well  mixtures  with 
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various diameter and well-depth ratios. The details of the simulations are 
described in detail elsewhere [2] .  The quantities calculated in these 
simulations were the radial distribution functions and the species coor-  
dination numbers.  Table II  shows the interaction parameters  and state 
points used. 

3.2. Mean Spherical Approximation 

The mean spherical approximat ion  (MSA) was suggested as a closure 
to the Ornste in-Zernike  [9 ]  equat ion by Lebowitz and Percus [4] .  For  a 
mixture the Orns te in-Zernike  equat ion may  be written 

hik(r) = c,k(r) + ~ ~ f h~j(Ir - r ' [)  c:(]r'l ) dr'  (7) 
/ / 

where hij(r)= g ( / ( r ) -1  is the total correlat ion function, and cu(r ) is the 
direct correlation function. The subscripts denote the different types of 
correlations between the species in the mixture. In the MSA Eq. (6) is sup- 
plemented with the condit ions 

h~/(r) = - 1 ,  r < a i /  (8) 

c.(.) - - uu(") 
k T  ' r > c r ,  (9) 

Equat ion (8) is an exact result which follows from the inpenetrability of the 
hard-sphere cores, while Eq. (9) is an approximation.  Equat ions (7)-(9)  

Table II. Mixture Square-Well Parameters and State Points Used in the 
Monte Carlo Simulations and MSA Integral Equation Calculations 

Square-well parameters 

Set 1 

Set 2 

State points 

MSA 

MC 

eu/kT= 0.4, e22/kT= 0.8 
0-11 =0"22, R l l  = R 2 2  = 1.5 

~11/k T = a22/k T = 0.4 
0-22 = 1.5 0-11, Rn = R22 - 1.5 

x l = 0.125 to 0.875 in increments of 0.125 
p0-3 = 0.1 to 0.7 in increments of 0.1 

xl = 0.25 to 0.75 in increments of 0.25 
po -3 = 0.1 to  0.7 in  i n c r e m e n t s  o f  0.2 

0 -3 ~ x 1 0-1l 3 ~- x20-223 
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may be solved simultaneously to obtain the total and direct correlation 
functions at a given temperature and density. To do this we have used the 
efficient and stable method developed by Gillan [-10] and extended to 
mixtures by Abernethy and Gillan [11]. In these numerical solutions we 
have used a grid size of 0.05all and a maximum value of r of 6.@11. 

Once the distribution functions have been obtained, the coordination 
numbers may be calculated, as well as other thermodynamic properties. 
Due to the approximate nature of the MSA, the values of thermodynamic 
properties obtained via different routes are not consistent with each other. 
For pure square-well fluids, Smith et al. have found that the energy 
equation route is the most satisfactory and gives excellent agreement with 
computer simulation results except at low densities. Additionally, of course, 
this is the route which is thermodynamically consistent with the 
calculations of coordination numbers from the distribution functions. Hoye 
and Stell [12] have shown that all the energy equation thermodynamic 
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Fig. 1. The radial distribution function for a square-well mixture in which a 1 = 1 . 5 ,  0 "  2 = 1.0, 
811=e22=0.4, pa3=0 .3 ,  and x 1 =0.5.  The lines are the result of MSA and the points �9 A,  
and [] are the Monte Carlo results for gal, g12, and g22, respectively. 
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properties in the MSA may be obtained directly from the distribution 
functions without recourse to numerical thermodynamic integration or dif- 
ferentiations. Therefore, thermodynamic properties from the MSA used in 
this paper were obtained using the energy equation. 

4. RESULTS 

As mentioned above, there are two aspects to the present paper. First, 
we wish to demonstrate the efficiency of using the MSA as an economical 
and accurate probe of the local structure in these mixtures, which can then 
be used in more extensive investigations. Second, we wish to use results 
from both the simulations and the MSA to investigate the accuracy of key 
assumptions inherent in the local composition models used currently. 

Figures 1 and 2 show the representative comparisons of the dis- 
tribution functions in square-well mixtures calculated from the MSA with 
those from the Monte Carlo simulations. The agreement is excellent, 
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Fig. 2. The radial distribution function for the same square-well mixture with p~5=0.7. 
Legend as for Fig. 1. 
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especially at a high density, which is impressive since the MSA calculations 
are very quick and inexpensive. Having thus established the accuracy of the 
MSA, many of the comparisons which follow will be with the MSA results. 
It should be noted, however, that the MSA is not correct in the limit of 
zero density and, therefore, contains some error at low densities as well. 

From the radial distribution functions the spcial-species coordination 
numbers, No, can be calculated from Eq. (4), and the total coordination 
number from Eq. (6). Figure 3 is a plot of the ratios as a function of 

reduced density pO "3 and composition. Shown are the results of Monte 
Carlo simulation, MSA theory, and the various local composition models 
in Table I. From Fig. 3 we see the general agreement between the Monte 
Carlo and the MSA results for this very sensitive ratio and the lack of 
agreement of all the local composition models with the data derived from 
statistical mechanics. We believe that the small systematic discrepancy 
between the Monte Carlo and the MSA results is related to the incorrect 
low-density behavior of the MSA. 
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Fig. 3. The local  compos i t ion  ra t ios  N21N1 t7113/NllN2a223 ( top)  and  N12N2t7223/N22NIffI23 
(bo t tom)  as a funct ion of densi ty  for (a) a n = a22 = 1, en/kT=0.4, and  e22/kT=0.8 and  (b) 
tr n = 1, cr22 = 1.5, and  en/kT= e22/kT= 0.4. These ra t ios  would  be uni ty  in a comple te ly  ran- 
dom mixture.  The  points  �9 and  [~, �9 and  A,  and  �9 and  (3 results  from M o n t e  Car lo  
s imula t ion  at  x l  =0 .25 ,  0.5, and  0.75, respectively. The  lines , , and  . . . .  are from 
MSA at  the same composi t ions .  The  r ema in ing  lines, ...-, . . . .  , and  - -  resul t  f rom the models  
of Wi l son  1-13], Whi t ing  and  Prausn i t z  [14] ,  and  H u e t  al. [15 ]  in (a). 
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Fig. 4. The total coordination numbers No1 and Nr as a function of composition at a con- 
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The second assumption imbedded in some local composition models 
(models e, f, and g in Table I) is that the total coordination number is con- 
stant as a function of the mole fraction. This assumption is tested in Figs. 
4-7, where we examine the composition dependence of the total coor- 
dination numbers as a function of the mole fraction at constant density, 
constant reduced density pa 3, and constant pressure. In Fig. 4 we see that, 
at a constant reduced density, the total coordination number is 
approximately constant with composition for equal-size molecules but 
increases for both the large and the small molecules with the mole fraction 
of the small molecule in the equal-well-depth, unequal-size mixture. 
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Fig. 6. The total coordination number  for each species in a 
mixture of equal-size square-well molecules versus composition 
at constant  pressure. The interaction parameters are e11/kT= 
0.4 and ez2/kT= 0.8. The solid line gives the results for com- 
ponent 2, and the dashed line that for component  1. Results 
for three pressures are shown, and the curves are marked with 
the value of P/kT. 
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Figure 5 shows that as the mole fraction of the small molecule increases, 
the total coordination number for both the large and the small molecules 
decreases at a constant reduced density. (Note that for the equal-size 
mixture constant density and constant number density are identical.) 
Finally, in Figs. 6 and 7 we see that for compositional changes at constant 
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Fig. 7. The total coordination number  for each species in a 
mixture of different-size square-well molecules versus com- 
position at constant  pressure. The interaction parameter  are 
cr u = 1.0, a22 = 1.5, and e11/kT= e22/kT= 4. The solid line gives 
the results for component  2, and the dashed line that  for com- 
ponent 1. The letters marking each curve denote the value of 
P/kT: (A) 1.0; (B) 0.5; (C) 0.25. 
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pressure in the unequal-size mixture, the total coordination numbers of 
both the large and the small molecules decrease with increasing mole frac- 
tion of the smaller species at low pressure, are approxmately constant at 
moderate pressures, and increase at high pressures. 

5. CONCLUSIONS 

In this communication we have shown, by comparison with the results 
of Monte Carlo simulation, that at moderate and high densities ( p a 3 ~  0.3) 
the mean spherical approximation is a computationally efficient method of 
obtaining accurate structural and local composition information about 
mixtures of square-well molecules. Presumably, other integral equation 
methods would also be useful for this kind of study with more general 
potential models. 

Next, we have shown in Fig. 3 that local compositions different from 
the bulk compositions do exist, but none of the local composition models 
for the ratios N J N j j  currently used are in agreement with statistical 
mechanical calculations. Since such local composition models are the basis 
for equation-of-state mixing rules and activity coefficient equations, further 
study of local compositions (or more correctly, the configurational energies 

C O N F  Eij ) is clearly justified. 
Also imbedded into some local composition models, such as that of 

Wilson [-13] and of Whiting and Prausnitz [14], is the lattice model 
assumption~that the total coordination number around a molecule is 
independent of the mole fraction. We have shown here that except for the 
case of equal-size molecules, this assumption is incorrect. In particular, for 
the unequal-size molecular mixture studied here, with increasing mole frac- 
tion of the smaller molecule, the total coordination numbers of both 
species increase at constant density, decrease at constant reduced density, 
and, depending on the system pressure, either increase or decrease at con- 
stant pressure. 
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